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Nonlinear dynamics and self-organization of rotary molecular motor ensembles
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The coupled nonlinear dynamics of rotary motor ensembles and an embedding fluid medium are simulated
on the basis of Navier-Stokes equations. The model description considers space-dependent rotation of motors
and a spatially inhomogeneous motor distribution as well as spatial fluctuations in molecular properties. The
mutual influnce of motor rotations and fluid dynamics as well as spatial inhomogeneities of their molecular
properties are self-consistently included. Space-time simulations visualize the complex interplay between the
fluid dynamics and motor rotation and show that the dynamic coupling to the environment via the velocity field
as well as the spatial inhomogeneity and distribution of rotors determines the overall behavior of the motor
complex. Depending on the initial molecular distribution, rotation frequency, and fluid dynamics a spatial

self-organization or a chaotic behavior may arise.
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I. INTRODUCTION

Molecular motors are nanometer-sized functional biomo-
lecular structures that consume energy to induce motion and
to generate forces. Their dynamics is highly nonlinear and
covers various time and length scales. Nature offers a large
variety of different motor families characterized by a particu-
lar chemical structure, an environment, and a specific way of
controlled (linear or rotary) motion. In the human body mo-
tor proteins control many essential processes such as cell
division, transmembrane transport of ions and macromol-
ecules, intracellular transport of vesicles and organelles, syn-
thesis of ATP or DNA, muscle movement, or functioning of
cells. Consumption of energy then leads to controlled trans-
lational (e.g., kinesin, myosin) or rotary motion of these mo-
lecular structures. Examples of rotary motors are the bacte-
rial flagellar motor that rotates a flagellum using proton flow
through the motor as the energy source and the FOF1-ATP
synthase, which comprises two rotary motors, one driven by
proton flow (FO motor) and the other by ATP hydrolysis (F1
motor) [1,2]. Rotational motors play a key role in many bio-
logical membranes [3,4]. Additionally, due to their promising
characteristics of working extremely efficiently and being
controllable, artificial nanomotors can be conceived that di-
rectly employ the fundamental principals of biological mo-
tors [5]: The orientation of micrometer-sized particles could
be driven and controlled by light [6,7]. Macroscopic mag-
netic disks (on a water surface) could be forced by a magnet
to rotational motion [8]. Similarly, ATP-synthase could be
used as a propeller inducing rotational motion in artifical
machinery. This will open the way to novel micro- and nano-
technical devices such as particle separators or machines in-
termingling fluids that are based on and use the principles
and mechanisms of these microscopic engines.

A main difference between biological and biotechnologi-
cal rotary motor complexes lies in their size: Typical motor
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densities in the chloroplasts of plants or in the mitochondriea
of human cells are 1000 ATP-synthase motors per um? [9].
In contrast, artificial rotary motor complexes may be com-
posed of larger particles, e.g., millimeter-sized magnetic
disks on a water surface [10]. However, there are many char-
acteristics that both types of systems have in common but it
is, in particular, the dynamic coupling of spatially inhomo-
geneous motor ensembles and an environmental fluid that
determines their overall behavior (e.g., assembly of cells or
macroscopic particles). The complex behavior of natural bio-
molecular and novel biotechnological systems thus repre-
sents a formidable challenge for theoretical descriptions and
numerical approaches that aim at a fundamental analysis of
the underlying interaction mechanisms as well as interpreta-
tions or even control of a system’s behavior.

In this paper we investigate the spatiotemporal dynamics
of rotary motors interacting with an environmental fluid. Our
theory is based on a mesoscopic, spatiotemporally resolved
approach that bridges theoretical descriptions of microscopic
biochemical properties of biological media with macroscopic
system theories. The model takes into account, in particular,
the various time and length scales and the full complexity of
the interplay of spatial with temporal degrees of freedom. A
space-dependent parameter set allows for a very general in-
clusion of molecular properties, particle distributions, and
fluctuations. We use a classical approach for the rotating mo-
tor ensemble and couple their dynamics self-consistently
with spatially and temporally resolved Navier-Stokes equa-
tions for the simulation of the fluid dynamics. The explicit
consideration of the spatial dependence of the quantities rep-
resents an extension of spatially averaged studies based on
the Navier-Stokes equations. Our spatially and temporally
resolved integration of the Navier-Stokes equation thereby
leads to a very natural and automatic inclusion of each
motor-motor interaction.

In the following, we will describe and simulate the spa-
tiotemporal dynamics of rotors embedded in a hydrodynamic
fluid. The theory and modeling will include, in particular, the
hydrodynamic motion in the fluid induced by the spatially
distributed rotating motors as well as the influence of the
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FIG. 1. (a) Scheme of the rotary model system. The spatially
distributed rotating motors are embedded in an environmental me-
dium. The dotted lines and arrows indicate the velocity field. The
embedding fluid is initialized with a zero velocity field and then
changes due to the coupling to the motor ensemble. (b) Simulation
of the velocity distribution at the rim of each motor: the velocity
fields in the neighboring meshes of the numerical grid (shaded area)
are calculated according to the motor rotation.

flow dynamics on the rotation and spatial distribution of the
motor ensemble.

II. THEORETICAL DESCRIPTION

We consider the situation displayed in Fig. 1(a). Rotary
motors with individual positions, rotation frequencies, and
locally varying coupling to the environment are spatially dis-
tributed within an embedding fluent medium. The rotation of
the rotors generates a characteristic velocity field v(r,z) in
their environment. Thereby, the dynamics of each motor
influences—via the mutual coupling of motors and the em-
bedding fluent medium—the motion of the other motors. In
the following we will derive a spatially and temporally re-
solved approach that includes the spatiotemporal dynamics
of motors and their environment on a mesoscopic scale. The
theory is based on the Navier-Stokes equations (for the simu-
lation of the fluent medium) [9] that are dynamically coupled
to a spatially inhomogeneous rotating motor ensemble. In
principle, the motors may be driven by, e.g., a chemical re-
action or an external force. Without loss of generality we will
in the following refer to a motor ensemble that is driven by
an external excitation. Thereby we focus our study on a clas-
sical rotation of monopolar particles (approximated by
spheres), i.e., we neglect that the rotation (as in many bio-
logical motors) might occur in a stepwise motion. Further-
more, we do not consider dipolar motors (as, e.g., the ATP
synthase). Our model system thus refers more to artificial
motors that can be described by monopoles driven by an
external field while biological macromolecules are driven by
internally generated forces and correspond to rotational di-
poles (as explained in, e.g., [11]). The (rotational and trans-
lational) dynamics of these motors is then determined by the
angular frequency applied to each motor and the velocity
distribution in the environmental fluid. The dynamics of the
fluid, on the other hand, is strongly influenced by the rotation
of the spatially distributed motors. We consider (without loss
of generality) a system of classical, spherical particles of
radius R rotating with a uniform rotation. We note that an
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extension of the model description to a motor ensemble with
a stepwise rotation or angle-dependent fluctuations (as, e.g.,
in the biological rotary motor F1-ADP synthase [4]) is
straightforward. The motor distribution is given by p,,(r,?)
where p,,(r,1)= pgl(r, t) when a motor is located at position r
in the biological medium and zero elsewhere. The motors are
embedded in a Newtonian fluid characterized by the viscos-
ity »# and density py. The dynamics of the velocity field
v(r,?) in the flow medium can be described by the following
Navier-Stokes equations:

pﬂgv(r,r) +palo(r,1) - Vio(r,n) - nV?0(r,0)=0. (1)

Thereby we have disregarded the pressure tensor (no tem-
perature gradient). A very convenient approach for a descrip-
tion of the influence of a motor rotation on a fluent is to
neglect in Eq. (1) the terms that depend on the density of the
environment (i.e., restricting oneself to systems with small
Reynolds numbers). This assumption then leads to the Stokes
equation with solution v=R*/r*wXr [12]. Aiming at a de-
scription of the full spatiotemporal dynamics of spatially in-
homogeneous motor—fluent medium complexes we here ex-
plicitly consider the full spatial and temporal dependence of
the physical quantities and numerically integrate Eq. (1)—
without further approximations—in space and time. The con-
sideration of the full spatial dependence of the variables
thereby self-consistently describes the motor rotation by di-
rectly transferring the velocity field (induced at the rim of the
rotor spheres by the motor rotation) to the medium. The ve-
locity distribution in the immediate environment of grid
points occupied by motors [shaded area in Fig. 1(b)] is then
given by v=w X r (using the no-slip condition, i.e., assuming
that the tangential velocity component is zero at the rotor
surface). The velocity dynamics in the remaining spatial po-
sitions (at each grid point and for each time step) is calcu-
lated using Eq. (1). At every grid point and for each time
step, the velocity field v is calculated on the basis of finite
difference methods (on a numerical grid with regular mesh
size) using the hopscotch [13] method as a general scheme.

The coupling between the rotors and fluent medium and,
particularly, the gradual transfer of the rotation to the envi-
ronment happens due to the dynamic coupling between
neighboring fluent layers. This is automatically included via
the spatial dependence of Eq. (1). Due to our explicit con-
sideration of the spatial and temporal degrees of freedom
within the molecular ensemble we only need to take into
account—at each spatial point r=(x,y)—the coupling of the
velocity field to the immediate neighboring elements of the
numerical grid, i.e., at (xx=Ax,y+Ay) (where Ax and Ay de-
note the length and width of a numerical element, respec-
tively). This “local” interaction is directly realized via the
spatial derivatives in Eq. (1). The influence of the rotation of
a motor on the environment and—via the motor-fluent-
medium coupling—to the dynamics of the neighboring mo-
tors is thus automatically included.

In principle, the spatiotemporal dynamics of the velocity
field may change the position of the spatially distributed mo-
tors. Depending on the coupling between the motors and the
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FIG. 2. Dynamic interaction between two motors: The dotted
lines and arrows indicate the velocity fields.

environmental fluid (determined by, e.g., the viscosity and
density) the motors may change their position. As a conse-
quence, the distribution of the rotary motors has to be recal-
culated after each time step. In a final step, we thus include a
possible change in motor positions induced by the dynami-
cally varying velocity distribution. In general, the motors
follow the local flow leading to dynamic positions of a new
quasiequilibrium distribution. The new motor positions can
thus be calculated by integrating Eq. (1) in space. In particu-
lar, this reorganization automatically includes the hydrody-
namic repulsion between neighboring motors (as a direct
consequence of inertial forces [10]) via their interaction in
the embedding medium. The direct numerical integration of
the partial differential equations of motion (1) allows a very
general and straightforward representation of spatial inhomo-
geneities and nonequilibrium dynamics of the motor—fluent-
medium system.

In the following, we will present selective results of our
computational modeling based on this description. Without
loss of generality, we will concentrate on motors character-
ized by a uniform (classical) rotation. We would like to note,
however, that the integration of a stepwise rotation that often
exists in biological motors (e.g., F1ATPase) is straightfor-
ward. Similarly, the theory can be extended to include bio-
logical motor complexes consisting of two rotors. In this
case the velocity changes induced by the motors can be de-
scribed by force centers at the edges of the motor complex
[11] and the thickness of the membrane surrounding the mo-
tors has to be explicitly taken into account [12].
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III. SPATIOTEMPORAL DYNAMICS
OF A TWIN-MOTOR SYSTEM

In the following we will first concentrate on the dynamics
of a twin-motor system (Fig. 2). The motors are immersed
in a fluid of viscosity 7, uniform density py, and kinematic
viscosity v=7/py. The Reynolds number of the spinning
spheres can be defined as Re=wR?/v. For the sizes used
in our simulation (R=400 um) and rotation frequencies
(w=0.5,...,5 s7) Re is of the order of 10~'—1, i.e., inertia
plays an important role.

The two motors rotate with identical rotation vector
=5 57" and radius R=400 um. They are positioned at a
spatial separation of D=5 mm witin an aqueous solution
(7=10" kgm™' s7!; p=10> kg/m?). Figure 3 shows snap-
shots of the motor distribution p,,(r,) (a)—(c) and the local
Kinetic energy &,,(r,t)=1/ 2pﬂvz(r,t) (d)—(f) taken immedi-
ately after the start of the calculation (a), (d), and at =100
(b), (e) and 200 ms (c), (f). At the start of the calculation, the
motors were aligned parallel to the y axis. The distribution of
en(r,t) reveals the dynamics of the energy flow. Note that
the abrupt cutoff in the center of the motor positions marks
the finite spatial extension of the rotors. Immediately after
the start of the calculation, the rotation of the two motors
induces a dynamic velocity flow in the environment. Due to
the finite rotation frequency and the viscosity of the environ-
ment this velocity field dynamically changes during the first
rotation (corresponding to 200 ms for a rotation frequency of
5 s7!) until a quasiequilibrium state is reached. Similarly, the
dynamic interplay of motor and fluent medium dynamics is
still growing in this time window. We would like to note that
the suitable design of such a velocity field around a set of
motors may also be used to generate a specific flow to gen-
erate macroscopic motion. In [14] it was shown that FI-
ATPase motors can be integrated in functional nanoelectro-
mechnanical systems to induce the rotation of
nanopropellers. The simulation of such systems will be con-
sidered in future investigations. In the given example the
motors are positioned rather close so that each motor expe-
riences not only the velocity field induced by its own rotation
but additionally the spatiotemporal changes in the velocity
field induced by its neighboring motor. In the given example
of two motors with identical rotational frequency, a spatial
area of destructive interferences arises between the two mo-
tors. The interaction and mutual coupling thereby depends on

FIG. 3. Temporal snapshot of the spatial mo-
tor distribution (a)-(c) and the induced local en-
ergy flow (d)-(f) in a two-rotor system at =0 (a),
(d), 100 (b), (e) and 200 ms (c), (f). The initial
spatial separation of the motors was D=5 mm,
the rotation frequency w=>5 s
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FIG. 4. Decoupled dynamics in a motor sys-

(©

(d)

the rotation frequencies of the motors as well as on the
physical properties of the environmental fluid. This effect
can clearly be seen in the distribution of the local energy
(being proportional to v?) that dynamically evolves during
the rotation of the motors. In the area between the two mo-
tors destructive interferences arises (Fig. 2) whereas con-
structive interference occurs in spatial regions where |r|>D.
The corresponding kinetic energy consequently is smaller if
D is larger. The snapshots of the velocity and of the local
energy distribution taken at 200 ms [Figs. 3(c) and 3(f)] shed
light on two important effects. First, the motors experience a
hydrodynamic repulsive force that pushes them apart. This
translational shift directly originates from the dynamic spa-
tiotemporal overlap of the velocity fields. In our model ex-
ample it is, in particular, inertia that leads to the observed
shift. Second, the motors may start a rotation around their
center of mass following the energy flow of their environ-
ment. This effect can be understood by looking at the arrows
indicating the overall velocity field around the motors
sketched in Fig. 2 or by following the torque of the energy
flow depicted in Fig. 3(f). The force pushing the motors apart
is similar to the Magnus force which is well known from
Bernoulli’s equations in fluid dynamics where it is correlated
with the pressure difference arising from a combined trans-
lational and rotational motion and consequently describes an
inertial effect. The dissipative motor—fluent medium system
given by our motor complex features an analog inertia effect
via the viscosity. In real (viscoelastic) fluids, additional time
scales may be present via the microscopic relaxation times of
the components in the fluent medium [12]. The right-hand
rotation of the two motors thus leads to a corresponding slow
right-hand rotation of the motors around their center of mass
[Fig. 3(c)]. The frequency of this collective rotation and the
spatial separation of the two motors in the quasistationary
case thereby depends on the properties of the fluent as well
as on the initial separation and rotation frequency of the mo-
tors. If the motor separation exceeds a critical separation
and/or the rotation frequency is too small to induce a signifi-
cant change in the fluent then the motor interaction may be
too small to induce a spatial drift. The snapshots taken at

tem with a spatial separation of 10 mm and a
rotation frequency w=>5s"'. The snapshots
[taken at £=100 (a), (c) and 200 ms (b), (d)] show
the distribution of the motors (a), (b) and the lo-
cal energy distribution (c), (d) induced by the two
motors.

t=100 (a), (c) and 200 ms (b), (d) of the motor distribution
and the local energy distribution induced by the two motors
with a spatial separation of 1 mm and a rotation frequency of
=5 s~ shown in Fig. 4 are an example of such decoupled
dynamics. With increasing time, a dynamic spatiotemporal
coupling of the velocity fields arises leading to a dynamic
overlap of the energy profiles [Fig. 4(d); the ellipse marks
the small difference between the two time steps]. However,
due to the larger separation, the dynamic spatial overlap is
much smaller than in the case of the close motor formation
(Fig. 3) and the influence of inertia on the motor dynamics is
decreased. The two motors consequently continue their de-
coupled rotation without changing their positions. One
should note that here we restricted our discussions to selec-
tive simulation results rather than exploring large parameter
scans. We would like to note, however, that a large advantage
of our model lies in the possibility of a systematic variation
and visualization of the control parameters and the resulting
distributions in a given motor system.

IV. DYNAMIC SELF-ORGANIZATION IN SPATIALLY
INHOMOGENEOUS MOTOR ENSEMBLES

Our computational modeling allows the description and
simulation of spatially inhomogeneous motor systems. Due
to the spatially and temporally resolved description we thus
do not have to use, e.g., averaged quantities to describe the
influence of the dynamics of the neighboring motors on a
specific motor. The spatially and temporally resolved integra-
tion of the Navier-Stokes equation leads to a very natural and
automatic inclusion of each motor-motor interaction. In the
following discussion we will focus on a multimotor en-
semble system embedded in an environmental fluid. Without
loss of generality, we consider an ensemble consisting of
N=14 motors. Depending on their spatial positioning and
rotation frequency the motors may arrange themselves in the
form of a regular grid, move about in a chaotic way, or
appear completely decoupled. In the start of the calculation
the motors (radius 400 wm) are initialized with a random
spatial distribution in a spatial field of size 25X 25 mm?
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[Fig. 5(a)]. We then study the following dependencies: the
influence of a variation in the coupling strength between mo-
tors and environment (Sec. IV A) the influence of spatially
inhomogeneity (Sec. IV B). Depending on rotation speed and
fluctuations the motors may then reorganize in a crystalline
order or form a disordered phase where diffusion is enhanced
by velocity fluctuations.

A. Influence of motor coupling

In the following we will analyze the fundamentals of the
interaction and coupling between neighboring motors. We
will focus on the reorganization of strongly interacting mo-
tors as well as on the influence of rotation frequency and
spatial separation of the motors. Figure 5 shows snapshots of
the motor distribution (a), (b) and local energy (c), (d) in a
system consisting of N=14 motors (all rotating in the same
direction). Without loss of generality we consider a situation
where the rotation frequency has been set to w=5 s~' and
viscosity of the fluent to 7=1073 kg m~' s7!. The first snap-
shot (a), (c) is taken at time rt=200 ms after the start of the
calculation where the rotating motors have already—due to

FIG. 5. Snapshots [at t=200 ms (a), (c) and
2's (b), (d)] of the motor distribution (a), (b)
and local energy (c), (d) in a system consisting of
N=14 motors (w=5 s71).

their dynamical coupling to their environment—induced a
significant overlap of their velocity fields and resulting en-
ergy distribution [Fig. 5(c)]. The collective behavior of the
system in combination with the rotational motion of the mo-
tor molecules leads to a complex dynamics: The velocity
field induced by each motor leads to a repulsive translational
force acting on the neighboring motors. At the same time,
each motor experiences the velocity field generated by the
other motors. The dynamics of the motor ensemble conse-
quently is determined by both the coupling of the motors to
their environment and the physical properties of the fluent.
The second snapshot (b), (d) is taken at a time point =2 s
after the start of the calculation. In the shown example, the
dynamic coupling between the rotating motors and their en-
vironment leads to a reorganization of the motor ensemble
[Fig. 5(b)] in a gridlike structure (Wigner crystal) and to a
corresponding minimization of the kinetic energy of the sys-
tem [Fig. 5(d)]. The formation and stabilization of such a
grating is strongly dependent on the coupling of the indi-
vidual motors. As a consequence, a critical rotation fre-
quency exists for a given motor arrangement [9]. For com-
parison, Figs. 6 and 7 show two examples that visualize the
influencing factors of the rotation frequency (Fig. 6) and the

FIG. 6. Snapshots of the motor distribution
(a), (b) and local energy (c), (d) for a rotation
frequency of w=1.0 s™!. The time steps and the
scaling of the z axis are the same as in Figs. 5(c)

and 5(d). The white ellipse marks two motors that
are slightly shifted in spite of the small motor—
fluent medium coupling.
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FIG. 7. Snapshots of the motor distribution
(a), (b) and local energy (c), (d) (w=1.0s7") at

(b) ¥

> t=200 ms (a), (c) and =2 s (b), (d) in a system
where the motors are initially positioned in nar-
row spatial area near the center.

@

initial spatial distribution (Fig. 7). Figure 6 shows—for the
same initialization of the motor positions and the same time
steps as in Fig. 5—snapshots of the motor distribution (a),
(b) and local energy (c), (d) for a situation where the rotation
frequency has been reduced to w=1.0 s™'. In this case, the
reduced velocity transferred from the motor rotation to the
immediate motor environment leads to a smaller amplitude
in the energy distribution [the scaling of the z axis is the
same as in Figs. 5(c) and 5(d)]. As a consequence, the
changes in the energy distribution are to a larger degree re-
stricted to the area immediately surrounding the motor posi-
tions. Only two motors with rather close initial positions
[marked with a white ellipse in Figs. 6(a) and 6(b)] are
slightly shifted apart while the remaining motors keep their
initial positions.

For the same rotation frequency (w=1 s™!) Fig. 7 visual-
izes the influence of the initial spatial distribution. In this
example, the motor positions were closer to the center of
the rectangular spatial area. As a consequence, an increase
in coupling strength arises due to the smaller average dis-
tance between neighboring motors and the motors again
drift toward a regular gridlike structure in the second time
step [Figs. 7(b) and 7(d)). In a given system, the lattice con-
stant of the resulting grating is a function of initial distribu-
tion, rotation frequency, and the physical properties of the
environmental fluent.

B. Influence of spatial inhomogeneity

The dynamics of the motor—fluent medium system de-
pends not only on the coupling between the rotating motor

ensemble and the environment but also on spatial inhomoge-
neities in the motor ensemble or fluent medium properties.
Statistical fluctuations in the motor positions, rotation fre-
quencies, or velocities may enhance a diffusive motion,
thereby representing a counterpart of the reorganizing forces.
In real motor systems the properties of the motors and of the
fluent medium may strongly vary from one spatial point to
another. In the following we will show results of simulations
of a motor ensemble with variable rotation frequency, a spa-
tially inhomogeneous fluent medium, and the generation of a
macroscopic flow by inhomogeneous motor rotation. In the
following we consider a motor ensemble with a spatially
varying motor rotation. In our example we assume a spatial
fluctuation of 10% (assuming a Gaussian distribution)
around a central frequency of w=1 s~!. Figure 8 shows two
snapshots of the local energy distribution, taken at =200 (a)
and 2 s (b), respectively. The amplitude in the environment
of the motor rims thereby directly reflects the spatially vary-
ing motor rotation that is transferred to the medium. One
should note that in this case we have omitted the grid points
directly neighboring the motor positions in order to plot the
distribution of the velocity field only (without the velocity
immediately at the rim given by the rotation frequencies).
The motor—fluent medium coupling is rather moderate so
that no reorganization of the spatial motor distribution oc-
curs. However, a partial influence of the velocity distribu-
tions induced by the individual motors can clearly be seen in
the second snapshot: The motors influence each other via
their dynamic interaction with the fluent medium, leading to
a partial influence of the velocity fields in the immediate
environment of the individual motors. As a consequence, the

FIG. 8. Snapshots of the local energy distri-
bution at r=200 ms (a) and 2 s (b) in a motor
ensemble with a rotation frequency of w=1 s
and a spatial flutation in w of 10%.
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variation of the amplitude of the local energy near the rotor
center becomes smaller with increasing interaction time [Fig.
8(b)].

In a next step we now consider a spatial inhomogeneity in
the velocity field distribution. As an example, Fig. 9 shows
the results of a simulation of a motor system with a spatial
fluctuation in the velocity distribution of 10%. Shown are
snapshots of the motors [Figs. 9(a) and 9(b)] and the local
energy fields [Figs. 9(c) and 9(d)] for r=1 (a), (c) and 2 s (b),
(d), respectively. Depending on the spatial arrangement and
the physical properties of motors and the environment such
flucutations may induce elongations of the motors from their
quasiequilibrium and destabilize a given distribution. The
snapshots of the motor distribution (w=>5 s7!) [for =1 (a)
and 2 s (b)] show that the motors dynamically change their
positions but do not form a regular grid. The corresponding
distributions of the local energy [Figs. 9(c) and 9(d)] visual-
ize the fluctuations in the velocity field that lead to the dy-
namically changing motor positions. Depending on motor-
environment coupling and on the spatial separation from the
neighboring motors the motor movements may increase or
decrease with increasing time.

Recent investigations have demonstrated that a nonuni-
form rotation of motors (e.g., the vortical motion of cilia
[15,16] or that generated in a diffusive motor ensemble
by using asymmetric boundaries [9]) may be responsible
for left-right asymmetries in the vertebrate body plan. A
nonuniform rotation may thus represent an interesting
method for the generation of a macroscopic flow. Here we
consider as an example a row of motors rotating with fre-
quency w=wg+ dw(¢p) where w, denotes the uniform contri-
bution and Sw(¢p)=0.2 sin(¢) (¢ denotes the angle in the
plane of the motor ensemble with respect to the motor row).
Figure 10 shows a snapshot of the local energy for
0=0.5 s™! and =200 ms. The sketch on top of the distribu-
tion visualizes (for two rotors) the spatially inhomogeneous
motor rotation. The nonuniform rotation introduces a spa-
tiotemporal inhomogeneity in the system leading to dynamic
(in the example sine-shaped) acceleration and deceleration of

FIG. 9. Snapshots of the motor distribution
(a), (b) and the local energy distribution (c), (d)
for t=1 (a), (c) and 2 s (b), (d) in a motor—fluent
medium system with a spatial fluctuation in the
fluent medium properties of 10%.

the motor rotation. As a consequence, the flow fields pointing
to the left and the right sides of the motor row are of differ-
ent magnitude leading to an overall flow in one direction
(in our example, to the left side of the row; see sketch in Fig.
11). This example clearly demonstrates that an asymmetry
or even control in a macroscopic flow may be generated
by a suitable design of artificial motors. This result can
only provide a first insight into possible control mechanisms
or nanomechanical systems based on artificial motors. Future
investigations will include details of the structure and
movement of biological motors. This may then contribute to
the interpretation of velocity fields in biological motor
ensembles.

Our simulations on selective motor systems clearly reveal
the complex dependence of a spatially inhomogeneous motor
ensemble on rotation frequency, spatial distribution, and
noise. The shown results cannot give more than a first indi-
cation of possible systematic simulations of real molecular
systems. However, we would like to note that in particular
the spatial and temporal resolution of the model description

FIG. 10. Snapshots of the local energy distribution of a motor
row with inhomogeneous rotation.
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as well as the explicit inclusion of spatial fluctuations in
molecular properties (e.g., spatial ordering or rotation),
noise, and dynamic motor—fluent medium coupling within
the framework of the Navier-Stokes equations may, in prin-
ciple, allow the systematic investigation of much more gen-
eral motor—fluent medium systems. In particular, it may pro-
vide the basis for a fundamental and comparative analysis of
both artificial motors driven by external fields and biological
motors in a viscoeleastic solvent.

V. CONCLUSION

We have presented a spatially resolved Navier-Stokes
model describing the coupled nonlinear dynamics of rotary
molecular rotor ensembles within an embedding fluent. Our
model includes, in particular, the coupling of the embedding
fluid to a spatially inhomogeneous motor ensemble and ex-
tends exisisting models with respect to the spatial degree of
freedom. Our mesoscopic approach is based on spatially re-
solved equations of motion describing the fluid dynamics
and includes, in particular, space-dependent parameters for
molecular properties and spatiotemporal noise. Space-time
simulations on the basis of this approach reveal fundamental
yet directly application-relevant results on the spatiotemporal
dynamics of molecular motor complexes. They visualize a
complex spatio-temporal interplay of motor ensembles and
their environment and allow the fundamental analysis of the
influence of particle distribution, angular frequencies of the
rotary motion as well as spatiotemporal fluctuations in the
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physical parameters of the motors or the fluent. The explicit
consideration of the spatial dependence allows the study and
visualization of the influence of individual parameters and
may be of particular importance for the realistic simulation
of, e.g., a given experimental situation where spatial inhomo-
geneities in motor distribution and motor parameters are very
typical. In our future investigations we plan to extend the
model description to include the substructure and dynamics
of complex biological motors such as, e.g., F1-ATPase. In
particular, we plan to consider the dipolar character that is
typical for many biological motors as well as the chemical
reactions. This will allow the spatially resolved description
of experimental observations such as, e.g., the artificial syn-
thesis of ATP induced by mechanical energy [17] or the step-
wise rotation in F1-ATPase [18]. The simulation of the full
complexity of the spatially varying nonlinear fluent medium
and motor dynamics may open new ways for fundamental
analysis and potential control of collective behavior induced
by the hydrodynamical interactions. Although we here have
applied our studies to concrete systems the very general ap-
proach can, in principle, be applied to many other systems.
In particular, the possibility to vary parameters individually
may allow the prediction of potential control parameters that
may enable an optimized efficient energy conversion and dy-
namics control. This may be of importance for both a physi-
cal understanding of fundamental biological processes in
natural rotary motor complexes as well as the transfer into
novel biotechnological devices.
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